

NETAJI SUBHASH INSTITUTE OF TECHNOLOGY, BIHTA, PATNA

Bachelor of Technology

Department of Machanical Engineering List of Course Outcomes with Program Outcome Mapping

SEMESTER - I												
Course Na	ame: BASIC ELECTRICAL ENGINEERING Course Code: 100101											
At the end of course student will able to												
CO 1	Examine and execute the basic concepts of AC and DC electric circuit and its behaviour.											
CO 2	Analyse the fundamental ideas behind magnetic circuits, including their definition, magnetic hysteresis phenomena, B-H curve, and hysteresis loop											
CO 3	Apply the essential ideas and definitions of AC circuits, including single-phase, three-phase, RC and RLC circuits, and star and delta connections.											
CO 4	Identify the different kinds of single-phase transformers and to compute efficiency, losses, and regulations.											
CO 5	Understand the working principles of Electrical Machines											

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	3	3	1	2		2	2			1	0	1	1	1
C02	2	2	1	3		2	2			1	1	1	2	1
C03	3	3	1	0		2	3			1	1	1	1	2
C04	3	3	2	3		2	3			1	2	3	1	1
C05	3	3	1	2		2	3			1	2	3	0	2
Average	2.8	2.8	1.2	2		2	2.6			1	1.2	1.8	1	1.4

Course Na	Course Name: ENGINEERING GRAPHICS & DESIGN Course Code: 100102											
At the end	of course student will able to											
CO 1	CO 1 Apply the concept of drawing in practical applications											
CO 2	Draw the projection of points, lines and planes											
CO 3	Classify solids and projection of solids at different positions											
CO 4	Show sectioned view of solids and development of surfaces											
CO 5	CO 5 Discuss about conics and orthographic views, isometric view of engineering components.											

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	2	1	1	1		2	1		1	1		2	1	
CO2	1	1	1	1	2				1	1			2	
CO3		1	1	1	1					1				2

CO4		1	1	1					1	1				2
CO5			1	1	1		1		1	1	2	1		1
Average	1.5	1	1	1	1.33333	2	1	0	1	1	2	1.5	1.5	1.66667

	Course Name: PHYSICS (ELECTROMAGNETISM) Course Code: 102101										
At the end	of course student will able to										
CO 1	Evaluate the physical quantities of electromagnetic fields in different media and apply gauss law										
CO 2	Describe static electric field boundary conditions, nature of dielectric material and evaluate potential fields										
CO 3	Explain steady magnetic fields, their behaviour in different media and associated law										
CO 4	Analyse time varying electric & magnetic field.										
CO 5	Understand the Maxwell equation in different forms & medium.										
CO 6	Describe the propagation of Electromagnetic waves and its nature in different medium .										

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	3	1	2	1	2		1			1				
C02	2	2	2	2	2		1			1				
C03	2	2	2	1	2		1			1				
C04	3	2	2	2	2		1			1				
C05	3	3	3	1	2		1			1				
C06	3	3	2	1	2		1			1				
Average	2.66667	2.16667	2.16667	1.33333	2		1			1				

Course Na	me: MATHEMATICS - I Course Code: 102102									
At the end	of course student will able to									
CO 1	Learn properties of real line and learn the concept of limit, continuity, differentiability of a real valued function and how to expand a function in powers of independent variable.									
CO 2	Understand the basics of Gamma and Beta function and Riemann integral for computing area, volume, mass etc.									
CO 3	Solve a function in powers of independent variable; its properties and Fourier series.									
CO 4	Apply theory of Matrices and its applications.									
CO 5	Describe about the maxima and minima of two variables using Lagrange's multiplier, tangent and normal plane.									

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	3	1	2	1		1			1	2			

C02	3	3	1	3	2				1		1	1	
C03	3	1											1
C04	3	3	2	2	2	3	1						
C05	3	3	1	2	2		2			2		1	
Average	2.8	2.6	1.25	2.25	1.75	3	1		1	2	1	1	1

Course Na	Course Name: BASIC ELECTRICAL ENGINEERING (P) Course Code: 100101P											
At the end	of course student will able to											
CO 1	Get an exposure to basic electrical laws.											
CO 2	Understand the response of different types of electrical circuits to different excitations.											
CO 3	Understand the measurement, calculation and relation between the basic electrical parameters.											
CO 4	CO 4 Understand the the basic characteristics of transformer and electrical machines.											

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	3	3	1	2		2				1		1	1	
C02	2	2	1	3		2	1			1	1	1		1
C03	3	3	1			2	1			1	1	1		
C04	3	3	2	3		2	1			1	2	3	1	
Average	2.75	2.75	1.25	2.66667		2	1			1	1.33333	1.5	1	1

	Course Name: ENGINEERING GRAPHICS & DESIGN (P) Course Code: 100102P													
At the end	At the end of course student will able to													
CO 1 Get acquainted with the knowledge of various lines, geometrical constructions and construction of various kinds of scales, and Ellipse.														
CO 2 Improve their imagination skills by gaining knowledge about points, lines and planes.														
CO 3	CO 3 Become proficient in drawing the projections of various solids.													
CO 4	CO 4 Gain knowledge about orthographic and isometric projections.													
CO 5	Developn	nent of su	face of di	fferent kin	d of solid.									
CO 6	Gain kno	wledge of	basic Aut	o Cad con	nmand and	l their use	s.							
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	CO1 2 1 1 1 2 1 1 2 1													
CO2	CO2 1 1 1 1 2 1 1 1 2													

CO3		1	1	1	1					1				1
CO4		1	1	1					1	1				2
CO5			1	1	1		1		1	1	2	1		1
CO6				1	3			2		1		1		
Average	1.5	1	1	1	1.33333	2	1	2	1	1	2	1.5	1.5	1.33333

Course Nar	Course Name: PHYSICS (ELECTROMAGNETISM) (P) Course Code: 102101P											
At the end	of course student will able to											
CO 1	Experimental verification of Faraday's law of electromagnetic induction											
CO 2	To study Hall Effect and determine Hall coefficient, carrier density and mobility of agiven semiconductor material using Hall effect setup.											
CO 3	To determine the time constant of RC circuit and resonance condition of a series LCR circuit.											
CO 4	To observe the motion of a charged particle acting due to the external magnetic field created by a Helmholtz coil.											
CO 5	Determine the frequency of alternating current using sonometer and they will be able to relate the tension of the wire, linear density of the wire, and the resonating length of the wire.											

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	2	1	2		2	2		1	1	1			
C02	2	2	1	2		2	2		1	1	1		1	
C03	2	2	1	2		2	2		1	1				1
C04	2	2	1	2		2	2		1	1				
C05	2	2	1	2		2	2	·	1	1				
Average	2	2	1	2	0	2	2	0	1	1	1	0	1	1

	SEMESTER - II
	Course Name : CHEMISTRY Course Code : 100203
At the end	of course student will able to
CO 1	Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.
CO 2	Rationalise bulk properties and processes using thermodynamic considerations.
CO 3	Analyze hardness of water for industrial and domestic applications.
CO 4	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques.
CO 5	Learn periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.
CO 6	List major chemical reaction that are used in the systhesis of molecules

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	2	1	2	1			3		2		2	2	2
C02	1	1	1	2	2					1	1	2	1	
C03	1	1	2	2	3	3	2		1	2	3	2	1	1
C04	2	2	2	3	2	2	2		1	2	2	3	1	2
C05					1			3		1		2	1	
C06	2	2	2	3	3	3	2		1	2	3	3	1	1
Average	1.6	1.6	1.6	2.4	2	2.66667	2	3	1	1.66667	2.25	2.33333	1.16667	1.5

Course Name: PROGRAMMING FOR PROBLEM SOLVING Course Code: 100204

At the end of course student will able to

CO 1	Formulate simple algorithms for arithmetic and logical problems.													
CO 2	Translate the algorithms to programs (in c language).													
CO 3	Test and execute the programs and correct syntax and logical errors.													
CO 4	Implement conditional branching, iteration and recursion.													
CO 5	Decompose a problem into functions and synthesize a complete program using divide and conquer approach.													
	1													
	P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
C01	2	1	1	1					1	1		1		
C02		1	1	1					1	1		1		
C03		1	1	1			1		1	1		1		
C04	1	1	1	1			1		1	1		1		
C05	1	1	1	1			1		1	1		1		
Average	1.33333	1	1	1			1		1	1		1		

Course Name: WORKSHOP MANUFACTURING PRACTICES

100205

100203											
At the end of course student will able to											
CO 1	Undersatnd different types of manufacturing techniques, their advantagas with their economic, socail and susatainable aspects.										
CO 2	Apply principalof fundamental and advanced mathematics, basic science and engineering, statistical techniques to calculate process parameters and design parameters to craete a product satisfying national and international standards used in any manufacturing process.										
CO 3	Compare, analyze,document and present various traditional workshop manufacturing processes as well as modern manufacturing tools.										
CO 4	Analyze alternative design as well as economic aspects of a given manufacturing process										
CO 5	Identify emerging technologies and make students aware of them for their continuous professional growth by bridging knowledge about emerging industry oriented technology										

Course Code:

	P01	PO2	P03	P04	P05	PO6	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	1	1	1	1	2					1		1	1	
CO2	1	2	1	2	2	2		2	3	1	1	2	2	
СОЗ	2	1	1	2	2		1		1	3	1			1
CO4	3	1	2	2	1					1	2	2		2
CO5	2	2	1	1	1		3	3			2	1		1
Average	1.8	1.4	1.2	1.6	1.6	2	2	2.5	2	1.5	1.5	1.5	1.5	1.33333

Course Name: WORKSHOP MANUFACTURING PRACTICES Course Code: 100205

At the end of course student will able to														
CO 1	Undersatnd different types of manufacturing techniques, their advantagas with their economic, socail and susatainable aspects.													
CO 2	Apply principalof fundamental and advanced mathematics, basic science and engineering, statistical techniques to calculate process parameters and design parameters to craete a product satisfying national and international standards used in any manufacturing process.													
CO 3	Compare, analyze,document and present various traditional workshop manufacturing processes as well as modern manufacturing tools.													
CO 4	Analyze alternative design as well as economic aspects of a given manufacturing process													
CO 5	Identify emerging technologies and make students aware of them for their continuous professional growth by bridging knowledge about emerging industry oriented technology													
	P01	PO2	P03	P04	P05	PO6	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	1	1	1	1	2					1		1	1	
CO2	1	2	1	2	2	2		2	3	1	1	2	2	
СОЗ	2	1	1	2	2		1		1	3	1			1
CO4	3	1	2	2	1					1	2	2		2
CO5	2	2	1	1	1		3	3			2	1		1
Average	1.8	1.4	1.2	1.6	1.6	2	2	2.5	2	1.5	1.5	1.5	1.5	1.33333

Course Na	me : ENGLISH Course Code : 100206
At the end	of course student will able to
CO 1	Communicate effectively and write and present properly.
CO 2	Work individually and in intra disciplinary and multidisciplinary teams.
CO 3	Understand recognition of the need for lifelong learning and to access information as well as development in science and technology.
CO 4	Develop knowledge of project management, risk management, innovation and change management, entrepreneurship and sustainable development.
CO 5	Define, identify, formulate and solve complex engineering problems as well as electing and applying appropriate analysis and modelling methods for wide purpose.

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	3	3	1	1	2		2			1	1	3	1	2
C02	3	1	1	3	2					2	1	2		2
C03	3	1	1	1	2	3	3			2	2	1		1
C04		2	1	1	2		2			1	1	2	1	0
C05		1	1	2	2			2	1	3	1	3	0	1
Average	3	1.6	1	1.6	2	3	2.33333	2	1	1.8	1.2	2.2	0.66667	1.2

Course Name: MATHEMATICS - II (ODE & COMPLEX VARIABLES)

Course

Code: 102202

	At the end of course student will able to													
At the end	of course s	student wil	ll able to											
CO 1	Discuss tl	he double	and triple	integrals	and its ap	plications	S.							
CO 2	Learn line	ear, non lii	near partia	ıl different	tial equation	ons of firs	t order and	l their solu	utions.					
CO 3	Study firs	st, higher o	order OdE	and their	solutions.									
CO 4	Understaı	nd differen	ntiation of	functions	of comple	ex variable	es. Apply t	he tools o	f integration	on of func	tions of co	omplex va	riables	
CO 5	Illustrate real integrals for various complex engineering problems													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	3	1	2	1		2			1	2			
C02	3	3	2	3	2					1		1	1	
C03	3	1	1		2					1	1	0		1
C04	3	3	2	2	2	3	2				2	1		
C05	3	3	1	2	2		1				2	0		
Average	2.8	2.6	1.4	2.25	1.8	3	1.66667			1	1.75	0.5	1	1

Course Na	me: CHEMISTRY(P) Course Code: 100203P
At the end	of course student will able to
CO 1	Determine the chloride content of water.
CO 2	Learn and apply basic techniques used in chemistry laboratory for volumetric analysis; redox titrations with different indicators; EDTA titrations.
CO 3	Expose different methods of chemical analysis and use of some commonly employed instruments.
CO 4	Synthesize a small drug molecule and analyze a salt sample.
CO 5	Estimate rate constants of reaction from concentration of reactant such as surface tension and viscosity

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	1		1									1	
C02	1	1		1		3	3		1		2	1		
C03	1	2	1	2	2	2	2			1	2			1
C04	1	1	2	3	2	3	3		2	2	3	2	2	
C05	2	1	2	2	2				1	2		1	2	
Average	1.4	1.2	1.66667	1.8	2	2.66667	2.66667		1.33333	1.66667	2.33333	1.33333	1.66667	1

Course Na	me : PRO C	GRAMMI	NG FOR	PROBLI	EM SOLV	/ING(P)	Course Co	de :10020)4P					
At the end	of course s	student wi	ll able to											
CO 1	To formulate simple algorithms for arithmetic and logical problems.													
CO 2	To transla	ate the alg	orithms to	programs	(in c lang	guage).								
CO 3	To test and execute the programs and correct syntax and logical errors.													
CO 4	To implement conditional branching, iteration and recursion.													
CO 5	To decompose a problem into functions and synthesize a complete program using divide and conquer approach.													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	1	1	1					1	1		1		
C02		1	1	1					1	1		1		
C03		1	1	1			1	0	1	1		1		
C04	1	1	1	1			1	0	1	1		1		
C05	1	1	1	1	0	0	1	0	1	1	0	1	0	0
Average	1.33333	1	1	1	0	0	1	0	1	1	0	1	0	0

Course Na	Course Name :WORKSHOP MANUFACTURING PRACTICES(P) Course Code:100205P									
At the end	of course student will able to									
CO 1	Understand the appropriate conventional and modern tools, materials, instruments required for specific operations with their limitations in workshop.									
CO 2	Identify, develop and improve practical skills in various machining operations and safety consciousness and show team work.									
CO 3	Design ,anlayze ,create and inspect an object in workshop using various machine and hand tool available in different shops such as fitting , carpentary weleding and machine shop.									
CO 4	Apply different conventional and advanced manufacturing techniques and measuring instruments for making a job with help of laws of basic science under economic constraints.									
CO 5	Discriminate and develop various sustainable, ethical and cost-effective solutions for real engineering problems using machine and equipments in workshop.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	1	2					1		1	1	
CO2	1	2	1	2	2	2		2	3	1	1	2	2	
CO3	2	1	1	2	2		1		1	3	1			1
CO4	3	1	2	2	1					1	2	2		2
CO5	2	2	1	1	1		3	3			2	1		1
Average	1.8	1.4	1.2	1.6	1.6	2	2	2.5	2	1.5	1.5	1.5	1.5	1.33333

Course Na	me : ENG	LISH(P)				Course	Code:	100206P							
At the end	of course	student wi	ll able to												
CO 1	Identify of	common ei	rrors in sp	oken and	written co	mmunicat	ion.								
CO 2	Get famil	iarized wi	th English	vocabula	ry and lan	guage pro	ficiency.								
CO 3	Improve	nature and	style of s	ensible wr	riting, acq	uire emplo	yment an	d workpla	ce commu	nication sl	xills.				
CO 4	Improve their Technical Communication Skills through Technical Reading and Writing practices.														
CO 5	Perform well in campus recruitment, engineering and all other general competitive examinations														
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02	
C01	2	2	2	1	2		1			2	2	2			
C02		2	2	2	2					1	1	1	1		
C03	3	1	1		2					2	1				
C04	1	2	2	2	2	3	2			1	1	1		1	
C05	2	1	1	1	2	2				1	1	2			
Average	2	1.6	1.6	1.2	2	1	0.6			1.4	1.2	1.2	1	1	

	SEMESTER - III										
Course Na	me: BIOLOGY FOR ENGINEERS Course Code: 100301										
At the end	of course student will able to										
CO 1	Describe how biological observations of 18th Century that lead discoveries.										
CO 2	Conveythat classification per seis not biology is all about highlight the underlaying criteria such as mophplogical, biochemical, and ecological.										
CO 3	Highlight the concepts of recessiveness and dominance during the passage of genetic material from parents to offsprings.										
CO 4	Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine.										

CO 5	Classify enzymes and distinguish between different mechanisms of enzymes action .														
CO 6	Identify I	ONA as a g	genetic ma	iterial in tl	he molecu	lar basis o	f informat	tion trasfer							
	P01	P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
C01	1		1	1	1			3		1		1	1		
C02	2	1	1	1	1		1	2	1	2		1		1	
C03	1	1		1							1			1	
C04	2	1	1	1		2		2		1	1		1		
C05		1		1	2					1					
C06		1	2	1	3		1		1	1					
Average	1.5	1	1.25	1	1.75	2	1	2.33333	1	1.2	1	1	1	1	

t the end	of course	student wi	ll able to											
CO 1	Understa	nding of th	ne fundam	ental cond	cepts of ele	ectronics a	and its cha	racteristic	s,concept	of design	regulator a	and DC po	ower suppl	ly.
CO 2	Design tl	ne basic cir	rcuits usin	g op-amp	and perfor	rm operati	ons and th	neir trouble	eshooting					
CO 3		nd to desig												
CO 4		and the bas				ıits								
							IEEE C							
CO 5	Study ab	out modula	ation ,mot	one comm	unication	system &	TEEE freq	uency spe	ctrum.					
	P01 PO2 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
C01	3	2	1	2	2		3			3	3	3	1	
C02	2	2	1	2	3		3			3	2	2		
C03	2	2	1	2	3		3			2	1	1		
C04	2	1		1	1	3	3			2	1	1		
C05	2	1	1	1	1						2	3		1
Average	2.2	1.6	1	1.6	2	3	3			2.5	1.8	2	1	1
	1				<u>I</u>	Į.	ı				ı	l	1	-
ourse Na	me : ENG	INEERIN	G MECH	HANICS		Cours	se Code :	100309						
t the end	of course	student wi	ll able to											
CO 1	1			alation to	n given eg	uilibrium	force exists	m usina d	arivad sai	ntific ma	chanical a	nd mathe	matical las	370

CO 3	1			centroid,		gravity an	d moment	of inertia	for the sir	nple and c	omposite	plane sec	tions usin	g	
CO 4	Understa	nd and ve	rify variou		regardin	g work an	d energy a	and mome	ntum metl	ods for pa	articles and	d rigid boo	dies and th	neir	
CO 5	Apply the	Apply the knowledge of kinetics and kinematics in solving the real time problems.													
	P01	01 PO2 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
CO1	3	2	1		2					1	1	1	1		
CO2		1	2	1	2	2	1	2	1	3	1			2	
СОЗ	2	1	1		1		1	2	1	2	1		1	1	
CO4		1	1	1	2					2		2			
CO5	2	1	1	1			1			1			1	1	
Average	2.33333	1.2	1.2	1	1.75	2	1	2	1	1.8	1	1.5	1	1.33333	

Course Na	me : MAT	HEMAT	ICS-III			Cours	se Code :	100312						
At the end	of course	student wi	ll able to											
CO 1		e effective neering pro		ical tools	for the sol	utions of	ordinary d	ifferential	equation	of higher	order that	model phy	sical pher	nomena
CO 2	dealing e	ngineering	g problems	i.		-	s of first o			-				-
CO 3	Apply the effective mathematical tools for solutions of partial differential equations of higher order that model physical phenomena and engineering problems.													
CO 4	Understand differentiation of functions of complex variables. Apply the tools of integration of functions of complex variables.													
CO 5	Illustrate real integrals for various complex engineering problems.													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	3	1	2	1		1			1	2			
C02	3	3	1	2	2					1				
C03	3												1	
C04	3	3	2	2	2	3	2				2	2		1
C05	2	2		1	2		1				3			
Average	2.6	2.75	1.33333	1.75	1.75	3	1.33333	0	0	1	2.33333	2	1	1

Course N	Tame: THERMODYNAMICS Course Code: 102304
At the en	d of course student will able to
CO 1	Understand thermodynamics terminology and different types of work along with mathematical expression. Have knowledge about
	thermodynamic properties and mathematical relation between them along with graphical representation
CO 2	Understand, discuss and derived the laws of thermodynamics and apply these laws in various engineering system. Identify high and low
CO 2	grade energy.

CO 3	Understand pure substances, ideal gas and gas mixture, saturated state and relation between pressure and temperature of pure substance and its graphical representation. Analyse, understand and apply compressibility chart, steam table, thermodynamics parameters and molier chart in different engineering													
CO 4	Analyse, systems.	understan	d and app	ly compre	ssibility cl	art, steam	table, the	rmodynan	nics param	neters and	molier cha	art in diffe	erent engir	neering
CO 5	Understa	nd dry and	l wet air, p	sychrome	etric proce	ess and sol	ve problei	n based or	n psychon	netric proc	esss.			
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	2	2	1	1	2		2			2		2		1
CO2	2	3		1	2	2	3			2	1	2	1	
CO3	2	3		1	2	2	2		1	2	1	2		
CO4	2	2	1	1	1					2		2	1	2
CO5		2	1	1	2	2	1			2		2		1
Average	2	2.4	1	1	1.8	2	2		1	2	1	2	1	1.33333

Course Name: ENGINEERING MECHANICS (P) Course Code: 100309P														
At the end	of course s	student wi	ll able to											
CO 1		nd practica a flywhee		ion of me	chanical co	ompenent	s such as f	lywheel ,p	oulley and	determine	related pa	arameters	such as m	oment of
CO 2	Learn the of data.	concept o	of friction	through in	nclined pla	iin experii	nent and v	erify New	ton's laws	s of motion	n and cons	servation p	orinciples	with help
CO 3	Identify a	n enginee	ring probl	em and re	cognize th	e experin	ents neede	ed to analy	ze it, in th	ne light of	Engineeri	ng Mecha	nics know	ledge.
CO 4	Perform experiments and find out unknowns such as forces, moments, positions and velocities following the instructions and present relations with help of appropriate method such as graphs.													
CO 5	Perform experiments in laboratory as being part of team, share information with each othet and learn to work as single unit.													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1		2	1	1	2	3	1			1	2	2		1
CO2	3	2	1	3	1		1			3	1	2	1	1
CO3	2	3	1	2	2	2	3	2			2	2	1	
CO4	2	1	1	3	2					3	2	1		
CO5									2	2	1	1	1	
Average	2.33333	2	1	2.25	1.75	2.5	1.66667	2	2	2.25	1.6	1.6	1	1

Course Nar	ne: Internship(P) Course Code: 100399P
At the end	of course student will able to
CO 1	Develop communication, interpersonal and other critical skills in the job interview process.
CO 2	Explore career alternatives prior to graduation.

CO 3	Handle re	andle real life challenges by making effective decisions at the organisations.													
CO 4	Adapt eff	icienty to	dynamic	industrial	environm	ent.									
CO 5	Assess interests and abilities in field of mechanical engineering.														
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02	
CO1	2	2	1		2		3		3	3		2	1	2	
CO2	2	1	1	2	3	2	3		3	3	1	3	3	1	
СОЗ	2	2	1	1	3		3		3	3	2	3		2	
CO4	2	2	2	1	3	3	3		3	3	2	2		2	
CO5	2	1	1	2	3	2	3		3	3		2		1	
Average	2	1.6	1.2	1.5	2.8	2.33333	3		3	3	1.66667	2.4	2	1.6	

Course Na	Course Name : Machine Drawing(P) Course Code : 102302P													
At the end	of course s	student wi	ll able to											
CO 1	Identify the	he nationa	l and inter	rnational s	tandards p	ertaining	to machin	e drawing						
CO 2	Apply lin	nits and to	lerances to	o assembli	es and cho	oose appro	opriate fits							
CO 3	Recogniz	e machinii	ng and sui	face finish	symbols.									
CO 4														
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	1		1						1	2		1	
C02	1	1	1	2	2					2				1
C03		1	1		2					1		1		
C04	1	1		1			2	2		1	2			
Average														

	SEMESTER - IV											
Course Na	me : Applied Thermodynamics Course Code : 102401											
At the end	At the end of course student will able to											
CO 1	Explain the working principle of air standard cycles.											
CO 2	Classify the IC engines along with the working principle and combustion process.											
CO 3	CO 3 Discuss the functionality of steam nozzles and steam turbines in power generation.											

CO 4	Explain t	he working	g of air co	mpressor	along with	factors in	nfluencing	its perfor	mance.					
CO 5	Compute	the coolin	g load for	air condi	tioning an	d COP of	refrigerati	on system	S.					
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
	3	3	2	1	2		2			1	1	3		
CO2	2	2	1	3	2					2	1	2		2
СОЗ	3	1	1	2	2	3	3			2	2	1	1	1
CO4	2	2	1	1	2		2			1	1	2	1	
CO5		1	1	2	2			2	1	3	1	3		1
Average	2.5	1.8	1.2	1.8	2	3	2.33333	2	1	1.8	1.2	2.2	1	1.33333

Course Na	me : Engin	neering M	aterials			Course	Code: 10	2402						
At the end	of course s	student wi	ll able to											
CO 1	Identify the application					science a	nd enginee	ering princ	ciple in de	velopmen	t of new n	naterial as	well as stu	ıdy of
CO 2	Calculate different lattice parameters in metals and alloys with help of basic and advanced mathematical techniques and understand their importance in industrial as well as research field.													
CO 3	Interpret effect of various heat treatment process and its effect on properties of steel being used in various sectors of society.													
CO 4	Produce different cost effective methods of producing different grades steels, following legislative and ethical standard for automobile and other industrial applications that can aid in sustainable development of nation.													
CO 5	Document and present relevant knowledge from different types of steels,non-ferrous alloy and ceramics.													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
	2	2	1	1	3	2	1			1	2	3	1	
CO2	2	3	1	3	2				1	3	1	3	3	2
CO3	3	1	1		1	2	1			1	1		3	2
CO4		1	1	1		2	3	2		1	2	2		1
CO5			1	2	1	2		2		3	1	1		1
Average	2.33333	1.75	1	1.75	1.75	2	1.66667	2	1	1.8	1.4	2.25	2.33333	1.5

Course Nar	ne: Fluid Mechanics Course Code: 102403
At the end	of course student will able to
CO 1	Understand the effect of fluid properties and also able to evaluate the fluid pressure and use various devices for measuring fluid pressure.
CO 2	Analyse fluid flow patterns and apply continuity and Bernoulli equation to it.
CO 3	Analyze different types fluid flow measuring devices and utilize fluid mechanics principles in design.

CO 4	Apply boundary layer and flow separation conceptsto determine lift and drag forces.														
CO 5	Perform o	Perform dimensional analysis and use dimensionless parameters to predict and compare fluid flow behaviour.													
	P01	P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
	2	3	1	3	2	2	1			3	2	2	1		
CO2	2	3	2	2	2	2	1			3	1	1	2		
СОЗ	2	3	2	3	2	2	1			3	2	2		1	
CO4	2	3	2	2	2	2	1			3	1	1		2	
CO5	2	3	1	2	2	2	1			3	1	1		1	
Average	2	3	1.6	2.4	2	2	1			3	1.4	1.4	1.5	1.33333	

Course Name : Instrumentation & Control Course Code : 102404														
At the end of course student will able to														
CO 1	Provide a basic knowledge about measurements systems and their components.													
CO 2	Learn about various sensors used for measurement of mechanical quantities.													
CO 3	Understa	Understand computerized data acquisition.												
CO 4	Learn about system stability and control.													
CO 5	Analyze t	Analyze the dynamic response and the calibration of instruments.												
CO 6	Integrate the measurement systems with the process for process monitoring and control.													
	, , , , , , , , , , , , , , , , , , ,													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	3	2	2	3	3	3	2			2	3	2	1	
C02	2	2	2	2	1	2	1			3	3	2		
C03	2	3	2	3	3	3	3			3	3	2	1	1
C04	3	2	2	3	3	3	3			3	2	2		1
C05	3	3	3	3	3	3	2			3	3	3		
C06	3	3	3	3	3	3	3			3	3	3		
Average	2.66667	2.5	2.33333	2.83333	2.66667	2.83333	2.33333			2.83333	2.83333	2.33333	1	1

Course Nar	ne: Strength of Materials Course Code: 102405
At the end	of course student will able to
CO 1	Identify properties of various mechanical Properties of material and their importance in designing a safe component.

CO 2	Understand how different components will fail under load with help of theories of failure for brittle and ductile materials.														
CO 3	Apply con	ncepts of s	stress, stra	in, princip	le stress u	sing basic	scientific	and enhie	eering prin	cipals.					
CO 4	Analyze t	Analyze the concept of bending and shear stresses using scientific theories and mathematics as well as it to create safe designs.													
CO 5	Design ar	Design and document various components using theries of failure.													
	P01	P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
	2	2 2 1 1 2 2 1													
CO2	2	3	2	1		2	2				1	2	3	2	
CO3	3	1	1	1			2			1		2	3	2	
CO4		1	1	1			1	2	1	2	1	2		1	
CO5			1	2	2	2	3	2		3	2	2		1	
Average	2.33333	2.33333 1.75 1.2 1.2 1.5 2 2 2 1 2 1.33333 2 2.33333 1.5													

Course Na	Course Name : Fluid Mechanics(Practical) Course Code : 102403P														
At the end	At the end of course student will able to														
CO 1	CO 1 Understand the knowledge about the basic properties of fluids.														
CO 2	Find out various conditions related to stability of floating bodies.														
CO 3	Analyse the fluid motion through Reynolds number.														
CO 4	Apply Bernoulli's equation in flow measuring devices together withtheir calibration.														
CO 5	Determine the sources of major and minor losses developed inside the fluid flowing pipe.														
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02	
C01	2	3	2	3	2	2	1			3	1	1			
C02	2	3	2	3	2	2	1			3	1	1			
C03	2	3	2	3	2	2	1			3	1	1			
C04	2	3	2	3	2	2	1			3	1	1			
C05	2	3	2	3	2	2	1			3	1	1			
Average	Average 2 3 2 3 2 1 3 1 1														

	Course Nan	ne: Strength of Materials (P) Course Code: 102405P	
	At the end of	of course student will able to	
Ī	CO 1	Understand the need to analyze various strength of a specimen and failure modes for applying in a practical design based project	work.

CO 2	Determine the hardness, impact strength, fatigue strength to analyze the application of a specific material for a given design. requirements for different loading conditions of structures or machines													
CO 3	Analyze the bending stresses which further build the foundation of using modern analysis software.													
CO 4	Evaluate the capacity of a material to withstand torsional stresses for a safe and sustainable design of machine elements.													
CO 5	Show validiate results in form of table, graphs etc and compare it with existing references.													
	P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
C01	1 2 1 2 3 1													
C02	3	1	1	1	2	3		3	1	2	3		1	1
C03	3	1	1	1	2	3	2	3	1	2	3		1	
C04	3	1	2	1	2	3	2	3	1	2	3			1
C05	1 1 2 3 1 3 1													
Average	3	1	1.4	1.2	2.25	3	2	3	1	2	2.4	3	1	1

	SEMESTER - V													
Course Na	me : Fluid	Machine	ry			Course	Code: 1	02501						
At the end	of course student will able to													
CO 1	Understand the deformation behavior of solids under different types of loading and mathematical solution for simple geometries.													
CO 2	Understand the basic knowledge of engineering design and its limitations of the machines for required application.													
CO 3	Apply knowledge to determine performance characteristics of radial and axial flow of turbines and pumps.													
CO 4	Develop and evaluate the performance and its calculation of pumps and tubines.													
CO 5	Studies and testing models of hydraulic machines.													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	2	1		1							1	3	1	
CO2	3	2	1	1						1	1	1	2	
CO3	2	1	1	1			1				2	2		2
CO4	3	2		2	1	2	2			1		3		2
CO5	2	2	1	1		2	3			1	2	2		1
Average	2.4	1.6	1	1.2	1	2	2	0	0	1	1.5	2.2	1.5	1.66667

Course Name : Heat Transfer	Course Code:	102502

At the end of course student will able to

CO 1	enginnering													
CO 2	Apply fur	ndamental	and adva	nced math	ematical to	echiques t	o devlop r	nodel vari	ous heat t	ransfer mo	des.			
CO 3						_				heat transf ge of desig		_	-	
CO 4	Understand various mode of heat transfer through a system and interconnect the relation between them													
CO 5	Apply existing model and data related to heat transfer model to analyze problem to draw appropriate conclusion, identify it's limitation and develop new model to overcome limitatation													
	P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
C01	2	2		1	1									
C02	2	3	1	1	2					2			1	1
C03	3	1	2	1	1	2	1	3	1		2	1		1
C04		1		1	2					1		1	1	
C05					2				1	1		3		2
Average	2.33333 1.75 1.5 1 1.6 2 1 3 1 1.33333 2 1.66667 1 1.33333													

Course Na	Course Name : Kinematics of Machine Course Code : 102503													
At the end	at the end of course student will able to													
CO 1	Understand the kinematics and rigid- body dynamics of kinematically driven machine components.													
CO 2	Understa	nd the mo	tion of linl	ked mecha	anisms in t	erms of th	ne displace	ement, vel	ocity and a	occeleration	n at any p	oint in a r	igid link.	
CO 3	Design some linkage mechanisms and cam systems to generate specified output motion.													
CO 4	Analyze the kinematics of gear trains.													
CO 5	Apply principal of physics in kinematics of brakes.													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	3	2	1	1	1	2	1					1	1	
CO2	2	1	1	2	2							3	2	
CO3	2				1	2	1							1
CO4														2
CO5														
Average	2 2.33333 1.5 1 1.5 1.33333 2 1 0 0 0 0 2 1.5 1.33333													

Course Name: Manufacturing Processes	Course Code: 102504
At the end of course student will able to	

CO 1	Explain about the real time applications of solid medium heat transfer.													
CO 2	Describe	the real ti	me applica	ations of fl	luid mediu	ım heat tra	ansfer.							
CO 3	Express the knowledge of design skills of heat exchangers.													
CO 4	Illustrate the real time applications of radiation mode of heat transfer (no media).													
CO 5	Relate the skill of mass transfer and its applications.													
	P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
C01	3	2	1	2	2					2		1		
C02	3	2	1	2	2					2		1		
C03	3	2	1	2	2					2		1		
C04	3	2	1	2	2					2		1		
C05		1			2					2				
Average	3	1.8	1	2	2					2		1		

	Course Name : Summer Entrepreneurship - II(P) Course Code : 100511P													
At the end	At the end of course student will able to													
CO 1	O 1 Advance their skills in competitive analysis and iteration while utilizing design thinking													
CO 2	Identify and secure customers, stakeholders, and team members through networks, primary customer research, and competitive and industry analysis													
CO 3	Improve problem-solving skills and communication by working in industrial enviroonment													
CO 4	4 Create engineering solutions for real life industrial or socail problem using knowledge earned throughout the program													
CO 5	Create oral and visual presentation skills build confidence in the skills necessary to cause others to act.													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	1	1	2	1		2	1		2	2	2	2	1	2
CO2	1	2	2	1	1	2	3		3	3	2	3	3	1
CO3	1	2	3	2	2	2	3	2	3	3	3	3		2
CO4	1	2	3	2	2	2	3	2	2	3	1	2		2
CO5	1	1	2	1		2	2		2	2	3	3		1
Average	age 1 1.6 2.4 1.4 1.66667 2 2.4 2 2.4 2.6 2.2 2.6 2 1.6													

Course Name: Fluid Machinery(Practical)	Course Code: 102501P	

At the end of course student will able to

				_	.1		and limit		1	impact of	jet.			
CO 1	Extract d	esired und	erstanding	g and conc	clusion wit	th quantity	and min	ation by a	nalysis of					
CO 2	Produce	and validia	ate results	through s	killfull use	e of engine	eering tool	s and mod	lels such a	is pumps a	and turbine	: .		
CO 3	Synthesis	se engineer	ring requi	rement fro	m a reviev	w of vario	us turbines	S.						
CO 4	Draw var	rious chara	cteristics	curves for	hydraulic	turbine aı	nd pump to	o analyze	machine's	performa	nce.			
CO 5	Analyze	data for tre	ends and c	orelation	of pumps	and their l	imitation.							
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	3	2	1	2	3	2	2			1	2	3	1	
CO2	3	2	1	2	3	2	2			1		2	1	2
CO3	2	1	1	2	3	2	1			1	1	3	1	
CO4	3	1	2	2	3		2			1		2		2
CO5	3	2		3	1		1			1	2	2		1
CO3				-										
Average Course Na				2.2	2.6	Cou	1.6	: 1025021	0	1	1.6667	2.4	1	1.6667
Average	me : Heat	Transfer(Practical		2.6					1	1.6667	2.4	1	1.6667
Average Course Nar At the end CO 1	me : Heat of course Understa	Transfer(student wi	Practical Il able to) of heat flow	w using lat	Cou	rse Code	: 1025021	?					1.6667
Average Course Nar At the end CO 1 CO 2	me : Heat of course Understa Calculate	Transfer(student wi nd different thermal c	(Practical) of heat flow ty of a giv	w using lat	Cou	rse Code	: 1025021	etion and	understand	d its indust	trial appli	cation	
Average Course Nar At the end CO 1	me : Heat of course Understa Calculate	Transfer(student wi and different thermal c	(Practical) of heat flow ty of a giv	w using lat	Cou	rse Code	: 1025021	etion and	understand		trial appli	cation	
Average Course Nar At the end CO 1 CO 2	me : Heat of course Understa Calculate Analyze experime	Transfer(student wi and different thermal c	(Practical ll able to nt mode of onductivity of given) of heat flow ty of a giv grey surfa	v using lab	Cou poratory a al using for various pri	pparatus puriers law	of conductions	ection and	understand	d its indust	trial appli	cation	1.6667
Average Course Nat At the end CO 1 CO 2 CO 3	me : Heat of course Understa Calculate Analyze experime Different	Transfer(student wi nd differen thermal c	(Practical III able to not mode of conductivity of given en free co) of heat flow ty of a giv grey surfa	v using lab ven materiate using v	Cou coratory a al using for various pri	pparatus puriers law nciples of n using ex	of conductions	ection and	understand	d its indust	trial appli	cation	
Average Course Nat At the end CO 1 CO 2 CO 3 CO 4	me : Heat of course Understa Calculate Analyze experime Different	Transfer(student wi nd different thermal c emmisivity nt iate betwe	(Practical III able to not mode of conductivity of given en free co) of heat flow ty of a giv grey surfa	v using lab ven materiate using v	Cou coratory a al using for various pri	pparatus puriers law nciples of n using ex	of conductions	ection and	understand	d its indust	trial appli	cation	
Average Course Nat At the end CO 1 CO 2 CO 3 CO 4	me : Heat of course Understa Calculate Analyze experime Different Draw con	Transfer(student wi and different thermal commissivity ant iate betweenclusions f	Practical Il able to nt mode of onductivity of given en free co) of heat flow ty of a giv grey surfa nvection a rimental re	v using late ven materiate using vend forced esults and	Couporatory apal using for various pring convections show resured	pparatus puriers law nciples of n using ex	of conduction heat trans	etion and fer by per	understand forming so	d its industritable exp	trial appli	cation in laborate	ory
Average Course Nar At the end CO 1 CO 2 CO 3 CO 4 CO5	me : Heat of course Understa Calculate Analyze experime Different Draw con	Transfer(student wi nd different thermal ce emmisivity nt iate betweenclusions f	P03	of heat flow ty of a given grey surfarent al re-	w using late wen material accuracy with a second forced esults and P05	Couporatory apal using for various pring convections show resured	pparatus puriers law nciples of n using ex	of conduction heat trans	etion and fer by per	understand forming si s in labora	d its industriated experience of the desired control of the desired	trial appli periments	cation in laborate	ory
Average Course Nan At the end CO 1 CO 2 CO 3 CO 4 CO5	me : Heat of course Understa Calculate Analyze experime Different Draw con	Transfer(student wi and different thermal cemmisivity int iate betweenclusions f	Practical Il able to nt mode of conductivity of given en free co from exper	of heat flow ty of a given grey surfarence of the polymer of the p	w using late ven materiate using vend forced esults and	Couporatory as all using for various prince convections show resure P06	pparatus puriers law nciples of n using ex	of conduction of	etion and fer by per	understand forming si s in labora	d its industriated its industrial tory P11 1	P12	cation in laborate	ory
Average Course Nar At the end CO 1 CO 2 CO 3 CO 4 CO5	me : Heat of course Understa Calculate Analyze experime Different Draw con P01 2 3	Transfer(student wi and different thermal ce emmisivity int iate betweenclusions f	Practical Il able to nt mode of conductivity of given en free co rom experi	of heat flow ty of a given grey surfarence gre	v using late ven materiate using vend forced esults and P05	Couporatory as all using for various prince convections show resure P06	pparatus puriers law nciples of n using ex	r of conduction trans	etion and fer by per	understand forming so in labora	d its industriated exputations P11 1	P12 3	cation in laborate PS01	ory
Average Course Nar At the end CO 1 CO 2 CO 3 CO 4 CO5 CO1 CO2 CO3	me : Heat of course Understa Calculate Analyze experime Different Draw con P01 2 3 3	Transfer(student wi and different thermal commissivity and thermal commissivity and thermal commissivity and thermal commissivity and the between clusions for the commission of the commission	Practical Il able to nt mode of conductivity of given en free co rom experi	pof heat flow ty of a given grey surface nvection and primental research to the poly-	v using lab ven materia uce using v and forced esults and P05 1 2 3	Couporatory as all using for various prince convections show resure P06	pparatus puriers law nciples of n using ex	P08	etion and fer by per	understand forming so in labora	d its industriated expression of the properties	P12 3 1	cation in laborate PS01	PS02

Course Name: Manufacturing Processes(Practical) Course Code: 102504P

At the end of course student will able to

CO 1	Analyze	the propert	ties of mo	ulding mat	erials and	l prepare p	atterns an	d send mo	ould cavity	for vario	us compoi	nents.			
CO 2	Apply el	ectric arc v	velding ar	nd gas weld	ling techn	iques and	prepare e	fficient we	elded joint	using app	propriate v	velding tec	chnique.		
CO 3				cal press w king, punc			able to pr	epare vario	ous compo	onents of s	heet meta	l using me	chanical p	oress	
CO 4		itable mac on of comp		erations su	ch as turn	ing, threa	d cutting,	milling an	ıd drilling	through a	ppropriate	machine t	tool for m	ass	
CO 5	Select the	e most app	ropriate n	nanufacturi	ing proces	ss for a giv	en produ	et design a	and cost co	onstraint.					
CO 6	Assess an	nd improve	the quali	ty, reliabil	ity and sa	fety of ma	nufacturir	ng process							
	P01	P01 PO2 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02													
CO1	3	2	1	2			1			3		1		1	
C02	3	2	1	2			1			3		2	1		
C03	3	2	1	2			1			3		2		1	
C04	3	2	1	2			1			3		2			
C05	2	2	1	2			1			3	2	1	1	2	
C06	1	1		1			1			3		2			
Average	2.5	1.83333	1	1.83333			1			3	2	1.66667	1	1.33333	

						SEM	IESTER -	VI						
Course Na	me : Desig	gn of Macl	hine Elem	nents		Cou	rse Code :	102601						
At the end	of course	student wi	ll able to											
CO 1	Apply fu	ndamental	s of stress	analysis,	theories o	f failure, d	lesign con	sideration	and factor	r of safety	in the des	ign a mac	hine a con	nponents.
CO 2	Design o	f shaft on	the basis o	of strength	, rigidity a	and variou	s types of	coupling 1	used in au	tomobile a	and power	generatio	n field.	
CO 3	Design a	nd analyze	temporar	y and perr	nanent joi	nt on vari	ous loadin	g applicat	ion.					
CO 4	Design a	nd analyze	various t	ypes of clu	itches and	brakes fo	r automob	ile industr	ries.					
CO 5	Design sp	pur, helica	l and beve	el gear for	various in	dustrial a _l	pplication.							
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	2	2		1	1					2			1	
CO2	2	3	2	2	2					3		1	2	
CO3	2	3	2	2	2					3		1		1
CO4	2	3	2	2	2					3		1		2
CO5	2	3	2	2	2					3		1		1
Average	2	2.8	2	1.8	1.8	0	0	0	0	2.8	0	1	1.5	1.33333

Course Na	me : Dyna	mics of M	achinery			Cou	ırse Code :	102602						
At the end	of course	student wi	ll able to											
CO 1	Analyze s	stabilizatio	on of sea v	ehicles, ai	rcrafts and	d automob	oile vehicle	es						
CO 2	Compute frictional losses, torque transmission of mechanical systems.													
CO 3	Analyze dynamic force analysis of slider crank mechanism and design of flywheel.													
CO 4	Understand how to determine the natural frequencies of continuous systems starting from the general equation of displacement.													
CO 5	Understa	nd balanci	ng of recij	procating	and rotary	masses.								
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	2	1	1	1	1	2	1			1		3	1	
CO2	1	1	1	2	2					1		1	2	
CO3		1	1		1	2	1			1				1
CO4	2	1	1	1		2	3					1		2
CO5	2	1	1	2	1					2		1		1
Average	1.75	1	1	1.5	1.25	2	1.66667	0	0	1.25	0	1.5	1.5	1.33333

Course Nat	me : Manu	ıfacturing	Technol	ogy		Cou	ırse Code	102603						
At the end	of course s	student wi	ll able to											
CO 1	Get the ki	nowledge	of Jigs and	d Fixtures	so as to de	esign jigs	and fixtur	e for vario	ety of oper	rations as 1	per nation	al and inte	ernational	standards
CO 2	Understar calculatio		le of engir	neering me	etrology, n	neasureme	nt standar	ds and ins	truments a	and apply	this know	ledge in w	orkshop	
CO 3	Analyze	vatrious co	ost effecti	ve materi	al handling	g technolo	gies used	in factory	automatic	on.				
CO 4	Implemer	nt the mecl	hanical en	ergy, cher	nical and e	electroche	mical base	d unconve	entional m	achining p	process.			
CO 5	Recogniz	e the need	of industr	ries, curre	nt necessit	y and env	ironment 1	elated issu	ue.					
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	2	1	2	1	3	2	1			1	1	3	1	
C02	2	2	2	3	2					3	1	1	2	
C03	2	2	1							1	2	2		2
C04	2	1	1	1	3					1		2		2
C05		1	1	1		3	2	2			2	2		1
Average	2	1.4	1.4	1.5	2.66667	2.5	1.5	2	0	1.5	1.5	2	1.5	1.66667

Course Na	me: Auto	mation in	Manufac	cturing		Cours	se Code :	102605						
At the end	of course s	student wi	ll able to											
CO 1		nd the nee uring with					t as well a	as applica	ntion of au	tomation i	n the field	of machi	ne tool ba	sed
CO 2	Create bu	ilding blo	cks for co	omplicated	l engineer	ing proble	ms using l	oasic exis	ting engin	eering sol	utions wit	h different	t standard:	s and
CO 3		knowled for indus			nts of man	ufacturing	; automatio	on such as	sensors t	o design	and develo	op cost eff	ective alte	rnative
CO 4	Documen statistical	it, analyze tools	various a	utomated	flowlines,	assembly	systems a	nd line ba	lancing m	ethods and	d create re	sults using	g mathema	atical and
CO 5	Learn abo	out existin	g Advance	e mathema	tical and	simulation	technique	es, compu	ter aidded	design an	d manufac	turing sof	twares	
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1		1	1	1	1	3	1	2		1	2	3	1	
CO2		2	2		2	2	2	2			2			2
CO3	2	1	1	1	2		3			1	2	1		
CO4	3	2	1	3	2				1	3	3	2		
CO5	2	1		1	2					2		2	1	
Average	2.33333	1.4	1.25	1.5	1.8	2.5	2	2	1	1.75	2.25	2	1	2

Course Na	me :Comp	osite Mate	rials			Co	ourse Code	e: 102609)					
At the end	of course	student wi	ll able to											
CO 1	Identify the various matrices, reinforcements and their combinations in composite materials.													
CO 2	Select appropriate composite materials as per industrial applications.													
CO 3	Apply simulation tools and mathematical approaches to design suitable composite material as per industrial requirement													
CO 4	Choose v	arious con	nbinations	of fibres	and resins									
CO 5	Design ar	nd develop	experime	ental meth	ods for pro	oducing e	conomic c	omposite	material w	hich are s	uitable for	environm	nent and so	ociety
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	3	2		1							2	3	1	
CO2	3	2	1	1						1	2	2	2	
CO3	3	1	1	1						1	2	2		2
CO4	3	2	1	1						1	2	3		2
CO5	3	2	1	1						1	2	2		1
Average	3	1.8	1	1	0	0	0	0	0	1	2	2.4	1.5	1.66667

Course Na	me : Powe	r Plant Ei	ngineerin	g		Course	Code: 1	02610						
At the end	of course	student wi	ll able to											
CO 1	Understa	nd the nee	d of powe	erplant for	economic	and soca	il upliftme	nt of nation	on, its adv	antages,de	emerits an	d limitatio	on.	
CO 2	Apply ma	athematica	l and scie	ntific appr	oach to an	alyze the	related the	rmodynar	nic proces	ses and cy	cle of diff	rent type	of powerp	lants .
CO 3							n such as r ational safe				al power p	olant keep	ing econor	nomic,
CO 4	Study and	d Develop	different	sustainable	e methods	to tackle	and handle	dust and	pollutants	produced	during po	wer gene	ration.	
CO 5	Undersan power tar		ve and otl	her related	parameter	rs crucial	in design a	ınalysis ar	nd operation	on of powe	er-plant lag	yout and o	calculation	of
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1	1	1	1	1	2	2	3			1	1	2	1	
CO2	3	2	1	2	2	2				2				2
CO3	2	3	3	2	1	2	3	3	1	2	2	2		3
CO4	2	2	2	2	1	2	2			2	1	2	2	2
CO5	2	1	1	2						1	3		2	
Average	2	1.8	1.6	1.8	1.5	2	2.66667	3	1	1.6	1.75	2	1.66667	2.33333

Course Na	me : Renev	wable Ene	ergy Syste	ems		Cours	se Code :	102611						
At the end	of course s	student wi	ll able to											
CO 1	Understar	nd the imp	ortance of	fenergycoı	nversion a	nd the fun	damental	principles	of renewa	ble energy	y sources.			
CO 2	Understar	nd physics	behind t	he solar er	nergy oper	ation and	its charact	eristics ar	nd its socai	l economi	c impact.			
CO 3	Comprehend the design and operation of wind energy systems as per national and international standards													
CO 4	Analyse t	he hydro e	energy pri	nciples and	d its appli	cations.								
CO 5	Gain know socail eco			energy sou	rces, inclu	ıding biofi	uels, bioga	ıs, and the	technolog	gy for conv	erting bio	mass into	energyan	d its
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
CO1		1	1	1			3	2		1	3	3	1	
CO2	2	2	1		2	2	3			1	2	2		
CO3	3	2	2	1	2	2	1	2	1	3	2	3		1
CO4	3	2	1	3	2	3	1	2		2	2	2		2
CO5			1	1		2	2	2			3	2	2	1
Average	2.66667	1.75	1.2	1.5	2	2.25	2	2	1	1.75	2.4	2.4	1.5	1.33333

Course Na	me: Design of Machine Elements(Practical) Course Code:
102601P	
At the end	of course student will able to
CO 1	Apply design procedure for design of cotter joint and knuckle joint and formulate the design procedure and acquire skill of finding processing area against failure.
CO 2	Apply the knowledge of design Data Hand book and ISO standards for selection of materials, strength and standard dimensions of design components
CO 3	Design shafts and keys subjected to direct and combined loading of given load and conditions.
CO 4	Design appropriate and efficient riveted joint for given loads and condition and analyse analytical results which design software.
CO 5	Apply design procedure for finding the maximum force the given power screw can lift and able to design various components of screw Jack with the help of safe design consideration.
CO 6	Identify the factors for engineering components design and analyse various members subjected to direct stress.

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	3	2	1	2	1					1			1	
C02		1	1							1			1	1
C03	2	2	1							1				
C04	3	2	1	2	1					1				1
C05	3	2	1	2	2					2				
C06	3	2	1	2	1					1				
Average	2.8	1.83333	1	2	1.25					1.16667			1	1

Course Na	me : Dynamics of Machinery(Practical) Course Code : 102602P
At the end	of course student will able to
CO 1	Understand application various types of Links, Pairs, Chain and Mechanism
CO 2	Construct velocity diagram for Slider Crank Mechanism.
CO 3	Find coefficient of friction between belt and pulley used in power transmission
CO 4	Plot follower displacement Vs cam rotation graph for various cam follower arrangement.
CO 5	Apply design procedure for finding the maximum force the given power screw can lift and able to design various components of screw Jack with the help of safe design consideration.

	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	3	2	1	2	1					1			1	
C02		1	1							1				2
C03	2	2	1							1			1	
C04	3	2	1	2	1					1			1	

C05	3	2	1	2	2			2		1	
C06	3	2	1	2	1			1			1
Average	2.8	1.83333	1	2	1.25			1.16667			

Course Na	me : Manı	ıfacturing	Technolo	ogy(Pract	ical)	Cour	se Code :	102603F	•					
At the end	of course	student wi	ll able to											
CO 1	Understar ethical us	nd need, wage.	orking an	d utility o	f various 1	neasuring	instrumer	nts, and to	impart pra	actical kno	owledge of	f measurer	nents and	their
CO 2	Analyze ş	gear tooth	profile us	ing gear to	ooth Verni	er/Gear to	oth micro	meter and	discuss re	asons in t	eam			
CO 3	1	length and d share dat	-		-	instrumen	ts, i. e. vei	rnier callip	pers, micro	ometers, b	evel protra	actor, sine	bar and su	ırface
CO 4	Evaluate	the surface	e roughne	ss using m	nechanical	comparat	or/Tally su	ırf for diff	erent mod	els and pr	esent aver	age result	obtained l	oy team.
CO 5	1	sic princip ation using	_	neering ar	d science	to calcula	te cutting	forces exe	rted in va	rious macl	nining pro	cesses and	l their	
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01	0	1	1	1	0	0	1	3	0	1	0	3	0	0
C02	3	2	0	3	3	2	1	0	2	2	1	2	1	0
C03	3	1	1	3	3	2	1	0	2	1	1	2	1	0
C04	3	2	1	3	3	2	1	0	2	2	1	2	0	1
C05	2	1	1	3	1	0	2	0	0	1	1	2	0	0
Average	2.2	1.4	0.8	2.6	2	1.2	1.2	0.6	1.2	1.4	0.8	2.2	0.4	0.2

Course Na	me : Autoi	nation in	Manufac	turing(Pr	actical)	Cour	se Code :	102605P	1					
At the end	of course	student wi	ll able to											
CO 1	Understa	nd the soc	ail, ethical	and ecor	nomical in	npact of a	utomation	in manuf	acturing v	vith help o	of case stu	dy.		
CO 2	Identify	various ty	pe of auto	mation to	ol and the	ir various	applicatio	ns and lin	nitations					
CO 3	Create sin	nple robot	t programs	s useful fo	r industria	l requiren	nent useful	for socai	l upliftmei	nt				
CO 4	Apply va	rious com	puter aide	d quality c	control tec	hniques aı	nd emergii	ng tools to	enhance j	productivi	ty of any i	ndustry.		
CO 5	1 ^	nt statstica rs related t			trial philo	sophies su	ich as GT,	CAPP an	d FMS in	industries	to analayz	ze and doc	ument dif	ferent
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	1	0					1	1	3		
CO2	1	1	1	1	2	2	2	0			0	2	1	
CO3	2	1	2	1	3			0		0	0	2	1	
CO4	2	2		1	3			0		1	2	2		1

CO5		0	1	3	2			0	3	3				
Average	1.5	1	1.25	1.4	2	2	2	0	3	1.25	0.75	2.25	1	1

						SEM	ESTER -	VII						
Course Na	me : Inter	nal Comb	ustion En	gines		Cours	e Code :	102701						
At the end	of course	student wi	ll able to											
CO 1	Understa	nd various	types of l	nternal Co	ombustion	engine, e	ngine part	s, strokes	and worki	ng princip	le.			
CO 2		e concept o		lynamics t	to air- stan	ndard cycle	e in IC eng	gine and a	nalyze the	effect of	various op	erating pa	rameters o	on IC
CO 3	Analyze 1	the charact	teristics of	IC engine	e fuel and	evaluate c	ombustion	n emission	phenome	ena of this	fuels in IC	C engine.		
CO 4	Different	iate among	g various t	ypes of fu	el injectio	n system a	and its effo	ect on perf	formance of	of SI and O	CI engine.			
CO 5	Analyze	various typ	oes of igni	tion syster	m and lubi	rication sy	stem and	its effect o	n thermal	efficiency	of IC eng	gine		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1		1						3			1	
CO2	3	3		2						3		1	2	
CO3	3	3		2						3		1		1
CO4	3	3		2						3		1		2
CO5	3	3		2						3		1		1
Average	3	2.6	0	1.8	0	0	0	0	0	3	0	1	1.5	1.33333

Course Na	me : Refri	geration a	ınd Air C	onditionii	ng	Course	e Code :	102702						
At the end	of course	student wi	ll able to											
CO 1	1	nd operation	•		ARS, anal	ysis of VO	CRS. Refr	igerant pro	operties, n	omenclatu	re, enviro	nmental is	ssues assoc	ciated
CO 2	condense	of compours, expans	ion device	es, evapora	ators, meth	ods of de	frosting, v	arious R &	& AC cont	rols.				
CO 3	thermoele	nd workin ectric refri	geration, v	vortex tub	e.	_			_					
CO 4	calculation				_									_
CO 5	Describe controls.	working o	of air trans	mission sy	stems and	l air distril	bution sys	tems, to u	nderstand	methods o	of duct des	ign and ai	r conditio	ning
		I		ı	I		ı	I	I				ı	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1	2		2			1	1	3		
CO2	2	2	1	3	2					2	1	2		2
CO3	3	1	1	2	2	3	3			2	2	1	1	1
CO4	2	2	1	1	2		2			1	1	2	1	

CO5		1	1	2	2			2	1	3	1	3		1
Average	2.25	1.8	1.2	1.8	2	3	2.33333	2	1	1.8	1.2	2.2	1	1.33333

Course Na	me : Autoi	mobile En	gineering			Cou	rse Code :	102705						
At the end	of course	student wi	ll able to											
CO 1	Understa	nd the fun	ction of ea	ch autom	obile com	ponent.								
CO 2	Evaluate	overall ve	hicle perfo	ormance.										
CO 3	Apply the	e concept of	of moving	off device	es to achie	ve ideal ti	raction.							
CO 4	Relate the	e existing	fuels with	alternate	fuels.									
CO 5	Realise a	nd underst	and the fu	nction of	automobil	e modals.								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		1	1	1	2	1			1		1	1	
CO2	2		1	2	2					2		2	2	
CO3			1		2	2	1			1				1
CO4	2	1	1	1		2	3			1		2		2
CO5				2	1					3		2		1
Average	2	1	1	1.5	1.5	2	1.66667	0	0	1.6	0	1.75	1.5	1.33333

Course Na	me : Oper	ations Res	search					Course	Code: 1	02706				
At the end	of course	student wi	ll able to											
CO 1	Understa	nd the nee	d of differ	ent types	of optiztio	n techniq	ues for vai	ious real l	life industr	rial and so	cail probl	ems.		
CO 2	1	nd formula	•	_	ng proble	ms and so	lve determ	ninistic and	d probabil	istic inven	tory mana	gement m	odels for l	known
CO 3	Informati	on about l	ouilding th	ne network	and findi	ng the cri	tical path,	as well as	the total of	duration as	nd cost of	the projec	t.	
CO 4	Understa	nd, build a	and solve t	ransport r	nodels and	d assignme	ent models	S.						
CO 5	Apply dy	namic pro	gramming	to solve p	oroblems i	nvolving	discrete ar	nd continu	ous variab	oles.				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1	3	2	1			1	1	3	1	
CO2	2	2	2	3	2					3	1	1	2	
СОЗ	2	2	1							1	2	2		2
CO4	2	1	1	1	3					1		2		2
CO5		1	1	1		3	2	2			2	2		1

Average 2 1.4 1.4 1.5 2.66667 2.5 1.5 2 1.5 1.5 2 1.5 1.666	Average		2	1.4	1.4	1.5 2.66667	2.5	1.5	2	1.5	1.5	2	1.5 1.6666
---	---------	--	---	-----	-----	-------------	-----	-----	---	-----	-----	---	------------

Course Na	me : Sumi	ner Entre	preneursl	hip-III		Cour	se Code :	100702P						
At the end	of course	student wi	ll able to											
CO 1	Advance	their skills	s in compe	etitive ana	lysis and i	teration w	hile utiliz	ing design	thinking	and experi	mental ap	proach.		
CO 2	Identify a	and secure analysis.	customers	s, stakehol	ders, and	team mem	bers throu	ıgh netwo	rks, prima	ry custom	er researcl	n, and con	npetitive a	nd
CO 3	Improve	problem-s	olving ski	lls and co	nmunicati	iion by wo	rking in i	ndustrial e	nviroonm	ent.				
CO 4	Create engineering solutions for real life industrial or socail problem using knowledge earned throughout the program.													
CO 5	Create oral and visual presentation skills build confidence in the skills necessary to cause others to act.													
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P10	P11	P12	PS01	PS02
C01			1	3	3				1	1		3	1	
C02	1	2	2	1			1		3	1	3	2	1	1
C03	2	1	1	1	3	3	3	3	2	1	3	2	1	1
C04	3	2	2	1	3	2	2		1		3		1	1
C05		•	1	1		•	•	•	1	3		•	1	
Average	2	1.66667	1.4	1.4	3	2.5	2	3	1.6	1.5	3	2.33333	1	1

Course Na	me : Proje	ect-I				Cours	se Code :	100709P	,							
At the end	of course	student wi	ll able to													
CO 1	Undertak	e problem	identifica	tion, form	ulation an	d solution	1.									
CO 2	Design e	Design engineering solutions to complex problems utilising a systems approach.														
CO 3	Communicate with engineers and the community at large in written an oral forms.															
CO 4	Compile relevant data, interpret & analyze it and test the hypotheses wherever applicable.															
CO 5	Demonstrate the knowledge, skills and attitudes of a professional engineer.															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	1	2	2	2	2		1		1	3	2	1	2	2		
CO2	2	2	3	3	3	2	3	2	1	2	2	2	2	1		
СОЗ	1	1	2	2	1	2	1		3	2	3	3	1	2		
CO4	2	2	2	2	3		2		2	3	2	2	1	1		
CO5	1	1	2	1	1	2	1		3	1	3	3	1	1		

Average 1.4 1.6 2.2 2 2 1.6 2 2 2.4 2.2 1.4	1.4	
---	-----	--

Course Na	me: Inter	nal Comb	oustion E	ngines(Pra	actical)	Cours	se Code :	100101							
At the end	of course	student wi	ll able to												
CO 1	Understand the working principle of various parts of Internal Combustion Engine and distinguish between SI and CI engine.														
CO 2	Analyse a fuel characteristics such as colourful value flashpoint and fire point of SI and CI engine fuels.														
CO 3	Understand actual valve timing diagram of four stroke SI and CI engines.														
CO 4	Develop a heat balance sheet after performance of SI and CI engine with various performance parameters.														
CO 5	Analyse the performance of multi cylinder engines with the variations of various parameters such as load and speed and evaluate indicated power and friction power of SI engine.														
	P01 PO2 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 PS01 PS02														
C01		1		1						3					
C02	3	2		1						3		1			
C03	1	1		1						3					
C04	3	2	1	2	1					3		1			
C05	3	2		2						3		1			
C06	3	2	1	1	1	2	1		•	3		1	•		
Average	2.6	1.66667	1	1.33333	1	2	1			3		1			

						SEMI	ESTER - `	VIII						
Course Na	me : Desi ş	gn of Trai	nsmission	Systems		Cour	se Code :	102802						
At the end	of course s	student wi	ll able to											
CO 1	Design e	conomoic	fand safe l	elt drives	(flat belt,	V-belt), c	hain drive	es, rope dr	ives, belt	drive pulle	ys & chai	n sprocket	S.	
CO 2	2 Apply the principle of Spur & Helical gear design for industrial application.													
CO 3														
CO 4	Design economic various gear boxes (sliding mesh, constant mesh, multispeed) through geometric progression, standard step ratio, ray													
CO 5														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2		2			2	2	2	1	2
CO2	3	2	1	1	2		2			2	1		3	1
CO3	3	2	1	1	2	3	2	2	1	2	1	2		2

CO4	3	2	2	1	2		2			2	2	2		2
CO5	3	3	3	1	2		2			2	1	2		1
Average	3	2.2	1.8	1	2	3	2	2	1	2	1.4	2	2	1.6

Course Na	me : Gas I	Dynamics	and Jet P	ropulsion	l	Сої	ırse Code	: 102802							
At the end	of course	student wi	ll able to												
CO 1		and unders		erence bety	ween com	pressible	and imcom	pressible	flow and	further stu	dy mach n	umber to a	analyze st	agnatioin	
CO 2		ass mome			uations for	r compres	sible flow	using basi	c physics	and therm	odynamic	s law thus	analyze is	sentropic	
CO 3	Calculate and anallyze effect of the flow parameters across normal and oblique shock wave applying engineering knowledge keeping environmental issues and personal safetey in coniderastion.														
CO 4	Understand the principal of jet propulsion and differentiate between jet propulsion engine on basis of their operating principle and cycle.														
CO 5	Explain theorey, principal and elements of rocket prupulsion system and evaluate its performance.														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	1	1	2		2			1	1	3	1	2	
CO2	3	1	1	3	2					2	1	2		2	
СОЗ	3	1	1	1	2	3	3			2	2	1		1	
CO4		2	1	1	2		2			1	1	2	1		
CO5		1	1	2	2			2	1	3	1	3		1	
Average	3	1.6	1	1.6	2	3	2.33333	2	1	1.8	1.2	2.2	1	1.5	

Course Na	me : Safet	y Manage	ment			Cor	urse Code	: 102807	7					
At the end	of course	student wi	ll able to											
CO 1														
CO 2	Comprehend the fundamental principles of safety management, including risk assessment, hazard identification, and the importance of safety culture.													
CO 3	Learn to apply techniques for identifying potential hazards, assessing risks, and prioritizing safety interventions.													
CO 4	Learn and apply the rules and guidelines on risk assessment and management.													
CO 5	Select appropriate control methodologies based on the hierarchy of controls.													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	1	1	1	3	3	3	1	1	2	3	1	2
CO2	2	2	1	1	1	3	3	3	1	2	3			2
СОЗ	2	1	1	1	1	3	3	3	3	2	3	1		1
CO4			1	1	1	3	3	3	3	2	3	2	1	

CO5		1	2	1	1	3		3	1	1	1	1		1
Average	2	1.5	1.2	1	1	3	3	3	1.8	1.6	2.4	1.75	1	1.5

Course Na	me : Non-C	Conventio	nal Manu	ıfacturing	ţ	Cou	rse Code :	102808						
At the end	of course s	student wi	ll able to											
CO 1	Identify need of non-conventional manufacturing processes over conventional manufacturing processes and classify the various non-traditional machining processes on basis of their principle of working .													
CO 2	Identify in	mportant p	process pa	rameters a	and scienti	fic princip	als associ	ated with	various no	on-traditio	nal machii	ning proce	esses.	
CO 3	Explain the effect of process parameters on performance characteristics like material removal rate and surface finish etc.													
CO 4	Understand the industrial applications as well as social-ecomical effect of different non-traditional manufacturing processes													
CO 5	Apply principal of physics in mathematical modelling of various non traditional manufacturing process													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2	1	2					1	1	3	1	
CO2	2	3	2	1	3		1		1	2	1	2	2	1
CO3	2	3	1	3	1				1	3			2	1
CO4		1	1	2	2	3	2	2	1	1	2	1		2
CO5	3	2	1	2	3				1	3				1
Average	2.33333	2.2	1.4	1.8	2.2	3	1.5	2	1	2	1.33333	2	1.66667	1.25

Course Na	me : Proje	ect-II				Cou	ırse Code	: 102808	}					
CO 1	Develop	skills in pı	roject man	agement,	research, j	problem-s	olving, an	d applying	g theoretic	al knowle	dge to pra	ctical scer	narios.	
CO 2	Design e	ngineering	solutions	to comple	ex problen	ns utilising	g a system	s approacl	h.					
CO 3	Communicate with engineers and the community at large in written an oral forms.													
CO 4	Apply the theoretical concepts to solve industrial problems with teamwork and multidisciplinary approach.													
CO 5	Reflect and evaluate on experiences that might lead to future employment.													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2													
CO1	1	2	2	2	2		1		1	3	2	1	2	2
CO2	2	2	3	3	3	2	3	2	1	2	2	2	2	1
CO3	1	1	2	2	1	2	1		3	2	3	3	1	2
CO4	2	2	2	2	3		2		2	3	2	2	1	1
CO5	1	1	2	1	1	2	1		3	1	3	3	1	1
Average	1.4	1.6	2.2	2	2	2	1.6	2	2	2.2	2.4	2.2	1.4	1.4